Henri Poincaré

http://es.wikipedia.org/w/index.php?title=Henri_Poincar%C3%A9&oldid=5506604
Henri Poincaré
Henri Poincaré

Jules Henri Poincaré (* Nancy, Francia, 29 de abril de 1854 - † París, 17 de julio de 1912), generalmente conocido como Henri Poincaré, fue un prestigioso matemático, científico teórico y filósofo de la ciencia. Poincaré es descrito a menudo como el último "universalista" (luego de Gauss) capaz de entender y contribuir en todos los ámbitos de la disciplina matemática. En 1894 descubrió el grupo fundamental de un espacio topológico.

En el campo de la mecánica elaboró diversos trabajos sobre las teorías de la luz y las ondas electromagnéticas, y desarrolló, junto a Albert Einstein y H. Lorentz, la Teoría de la Relatividad restringida (también conocida como Relatividad especial). La conjetura de Poincaré es uno de los problemas recientemente resueltos más desafiantes de la topología algebraica, y fue el primero en considerar la posibilidad de caos en un sistema determinista, en su trabajo sobre órbitas planetarias. Este trabajo tuvo poco interés hasta que comenzó el estudio moderno de la dinámica caótica en 1963.

En 1889 fue premiado por sus trabajos sobre el problema de los tres cuerpos. Algunos de sus trabajos más importantes incluyen los tres volúmenes de Los nuevos métodos de la mecánica celeste (Les méthodes nouvelles de la mécanique céleste), publicados entre 1892 y 1899, y Lecciones de mecánica celeste, (Léçons de mécanique céleste, 1905). También escribió numerosas obras de epistemología, propedéutica, metodología y divulgación científica que alcanzaron una gran popularidad, como Ciencia e hipótesis (1901), Ciencia y método (1908) y El valor de la ciencia (1904).

Tabla de contenidos

Biografía

Henri Poincaré nació el 29 de abril de 1854 en el suburbio de Cité Ducale, en Nancy, en el seno de una influyente familia. Su padre, Leon Poincaré (1828-1892), era profesor de medicina en la Universidad de Nancy. Su adorada hermana menor, llamada Aline, contrajo nupcias con el filósofo espiritual Emile Boutroux. Otro miembro destacado de la familia fue el primo de Henri, Raymond Poincaré, quien ocuparía la presidencia de Francia entre 1913 y 1920, y llegaría a ser miembro de la Academia francesa.

Educación

Durante su niñez, Henri estuvo seriamente afectado por la difteria, por lo que la tarea de su educación recayó en su madre, Eugénie Launois (1830-1897). Poincaré se destacó por la calidad de sus composiciones escritas.

En 1862 ingresó al liceo en Nancy (entidad que hoy lleva el nombre de Lycée Henri Poincaré en su honor). En el curso de los once años en que se desempeñó en esta institución, Poincaré demostró ser uno de los mejores alumnos en casi todas las materias que estudió. Su profesor de matemáticas lo describió como "un monstruo de las matemáticas", afirmación que se vio respaldada por los premios que ganó en el concours général, competencia que involucraba a los alumnos más destacados de los liceos de Francia. Las materias en que peor desempeño tuvo fueron música y educación física, donde su desempeño estuvo "en la media, en el mejor de los casos" (O'Connor et al., 2002). Algunos autores afirmaron que sus dificultades en estas áreas pudieron deberse a defectos en su visión, y a su tendencia a estar distraído (Carl, 1968). Poincaré se graduó en el liceo en 1871, con el grado de bachiller en letras y ciencias.

Ingresó en la prestigiosa École Polytechnique en 1873. Allí estudió matemáticas bajo la tutela de Charles Hermite, continuando su formación y llegando a publicar su primer paper (Démonstration nouvelle des propriétés de l'indicatrice d'une surface) en 1874. Tras graduarse en 1875 ó 1876, continuó su formación en la École des Mines. Allí siguió estudiando matemáticas en forma adicional a los contenidos de ingeniería en minas, y recibió su título de ingeniero en marzo de 1879.

Como graduado de la École, Poincaré se unió al Corps des Mines en calidad de inspector para la región de Vesoul, en el noreste de Francia. Estuvo en el lugar de los hechos durante el desastre de Magny en agosto de 1879, donde 18 mineros perdieron la vida. Poincaré condujo la investigación oficial sobre el accidente en forma sumamente detallada.

Al mismo tiempo, Henri se encontraba preparando su doctorado en ciencias matemáticas bajo la supervisión de Charles Hermite. Su tesis doctoral trataba sobre el campo de las ecuaciones diferenciales. Poincaré desarrolló un nuevo método para estudiar las propiedades de estas funciones. No solo encaró el problema de la determinación de la integral de estas ecuaciones, sino que fue la primer persona en estudiar sus propiedades geométricas. Por otra parte, se dio cuenta que dichas propiedades geométricas podían ser utilizadas para modelar el comportamiento de varios cuerpos en movimiento libre en el sistema solar. Poincaré obtuvo su doctorado en la Universidad de París en 1879.

Primeros años de su carrera

Poco después de su graduación, Poincaré aceptó una ofrecimiento para desempeñarse como profesor en la Universidad de Caen. No obstante su relación con las matemáticas, nunca abandonó totalmente su carrera en la minería. Prueba de ello es su trabajo en el Ministerio de Servicios Públicos, en el cual se desempeñó como ingeniero a cargo del desarrollo de ferrocarril del norte entre 1881 y 1885. Con el tiempo, Poincaré sería nombrado responsable del Corps de Mines en 1893, e inspector general en 1910.

A partir de 1881 y por el resto de su carrera, se desempeñó como profesor en la Universidad de París (La Sorbona). Inicialmente fue nombrado como maître de conférences d'analyse (profesor asociado de análisis) (Sageret, 1911). Con el tiempo, llegaría a ocupar las cátedras de Mecánica Física y Experimental, Física Matemática, Teoría de la Probabilidad, Mecánica Celestial y Astronomía.

Fue también en 1881 que Poincaré contrajo matrimonio con Poulain d'Andecy. Fruto de esta unión tuvieron cuatro hijos: Jeanne (nacida en 1887), Yvonne (en 1889), Henriette (en 1891), y Léon (en 1893).

El problema de los tres cuerpos

En 1889, y como parte de los festejos conmemorativos por su sexagésimo cumpleaños, el rey de Suecia Óscar II instituyó una competencia matemática cuyo objetivo era determinar la estabilidad del sistema solar, una variación del problema de los tres cuerpos. Poincaré señaló entonces que el problema no había sido planteado correctamente, y que de esa forma nadie lograría obtener una solución completa para el mismo. Su trabajo fue tan notable, que en 1888 el jurado decidió otorgarle el premio en dinero previsto para el ganador de la competencia. La conclusión principal de Poincaré establecía que la evolución de un sistema como el ejemplificado era extremadamente caótica, en el sentido que una pequeña perturbación en el estado inicial (como por ejemplo una mínima variación en la posición inicial de un cuerpo) podía llevar eventualmente a un estado radicalmente diferente. Por lo tanto, si con los instrumentos de medición disponibles no se puede detectar esa mínima variación, sería imposible predecir el estado final del sistema. Uno de los integrantes del jurado, el distinguido Karl Weierstrass, afirmó: "Si bien este trabajo no puede ser considerado como la solución completa del desafío presentado, es de tal importancia que su publicación marcará el comienzo de una nueva era en la historia de la Mecánica Celestial".

Posiblemente Weierstrass no se dio cuenta de lo acertadas que serían sus palabras. En su informe, Poincaré planteaba nuevas ideas matemáticas como por ejemplo los puntos homoclínicos. El trabajo estaba a punto de ser publicado en el jornal Acta Mathematica cuando el editor detectó un error. Dicho error condujo a nuevos descubrimientos por parte de Poincaré, que hoy se consideran los comienzos de la teoría del Caos. Finalmente el escrito fue publicado en 1890.

Hacia 1887, a los 32 años de edad, Poincaré fue nombrado miembro de la Academia de Ciencias Francesa. En 1906 sería electo presidente de dicha entidad, y tres años más tarde sería nombrado miembro de la Academia francesa:

Contribuciones a la relatividad

Marie Curie y Poincaré conversando en la Conferencia Solvay de 1911
Marie Curie y Poincaré conversando en la Conferencia Solvay de 1911

En 1893, Poincaré ingresó al Bureau des Longitudes de Francia, donde se le encomendó la tarea de la sincronización de los horarios del mundo. En 1897, Poincaré apoyo una iniciativa (finalmente rechazada) de decimalizar la medida circular, y con ello el tiempo y la longitud. Este trabajo le permitió considerar cómo los relojes en reposo en la tierra, que se estarían moviendo a diferentes velocidades relativas al espacio absoluto, podrían ser sincronizados. Al mismo tiempo, el físico holandés Hendrik Antoon Lorentz se encontraba abocado al desarrollo de la teoría de Maxwell hacia una teoría del movimiento de partículas con carga ("iones" o "electrones"), y su interacción con la radiación. En ese momento, ya había introducido su concepto de tiempo local

t^\prime = t-vx^\prime/c^2,\; \mathrm{donde}\; x^\prime = x - vt

y lo utilizaba para explicar la falla de los experimentos ópticos y eléctricos a la hora de detectar movimiento relativo al éter. Poincaré (1900) analizó la "fabulosa invención" del tiempo local de Lorentz, y manifestó que el concepto surge cuando se trata de sincronizar dos relojes en movimiento, mediante la emisión de señales luminosas que se supone viajan a la misma velocidad en ambas direcciones en un marco de referencia en movimiento. En "La medida del tiempo" (Poincaré, 1898), el autor analizó la dificultad de establecer la simultaneidad a la distancia, y concluyó que la misma puede ser establecida por convención. También discutió el "postulado de la velocidad de la luz", y formuló el Principio de la Relatividad según el cual ningún experimento mecánico o electromagnético puede diferenciar entre un estado de movimiento uniforme y el estado de reposo.

Se puede apreciar entonces que Poincaré fue un intérprete constante (y por momentos un crítico constructivo) de la teoría de Lorentz. Poincaré era en esencia un filósofo, interesado en el "significado profundo" de las cosas. De esta forma, llegó a interpretar la teoría de Lorentz en términos del Principio de la Relatividad, y al hacerlo llegó a numeorosas conclusiones que hoy están asociadas con la Teoría de la Relatividad Especial.

En su trabajo de 1900, Poincaré analizó la recarga de un objeto físico cuando emite un flujo de radiación en una dirección dada. Allí demostró que de acuerdo a la teoría de Maxwell-Lorentz esta emisión de radiación podía ser considerada como un "fluido ficticio" con densidad equivalente a e/c2, donde e es la densidad energética; dicho de otro modo, la "masa equivalente" de la radiación es m = E / c2, pudiendo expresarse E = mc2. Max Planck utilizó en 1907 el concepto de "momento de radiación E/c" de Poincaré, y la variación de la masa con la velocidad propuesta por Lorentz para confirmar la fórmula de Poincaré E = mc2. En sus trabajos, Einstein arribó a la misma fórmula E = mc2 que Poincaré había deducido tiempo antes.

Últimos años de su carrera

En sus últimos años, Poincaré se abocó a la teoría de la gravedad, que de alguna manera precedió a la relatividad general. Tal como lo estableció Langevin (1914) en una memoria dedicada a Poincaré, Poincaré había derivado ecuaciones covariantes de gravitación que predecían correctamente la dirección de la precesión del perihelio de Mercurio. Poincaré asumió que la gravedad se propagaba a la velocidad de la luz, e incluso llegó a mencionar las "ondas de gravedad". Tras la muerte del francés, David Hilbert publicó un desarrollo de la ecuación covariante gravitatoria, que se conoció como ecuación de campo y es la piedra angular de la Teoría General de la Relatividad.

Poincaré es reconocido también por su formulación de uno de los problemas más famosos en la historia de las matemáticas. La conjetura de Poincaré, como se dio en llamar, es un problema en el ámbito de la Topología que finalmente fue resuelto por el matemático ruso Grigori Perelman. En ocasión de los juicios de Alfred Dreyfus, Poincaré tuvo participación en 1899 y más activamente en 1904. En esa ocasión, atacó los espurios argumentos científicos de algunas de las evidencias presentadas contra Dreyfus, que era un oficial judío del ejército acusado de traición por algunos de sus colegas antisemitas.

En 1912 Poincaré debió ser operado a raíz de una complicación prostática, que eventualmente le causó la muerte por embolia el 17 de julio de 1912, a los 58 años de edad. Henri Poincaré se encuentra enterrado en el panteón de su familia en el Cementerio de Montparnasse, en París.

El Ministro de Educación de Francia, Claude Allegre, propuso recientemente que se trasladen los restos de Poincaré al Panteón de París, un alto honor que se reserva para los ciudadanos franceses.

Carácter

Los hábitos de trabajo de Poincaré han sido comparados con los de una abeja que vuela de flor en flor. Poincaré estaba sumamente interesado en la forma en que su mente trabajaba, lo cual lo llevó a estudiar sus hábitos y a dar en 1908 una charla con sus observaciones ante el Instituto de Psicología General de París. Allí presentó lo que suponía una relación entre su forma de pensar y sus principales contribuciones.

El matemático Darboux lo señaló como un intuitif (intuitivo), argumentando que esto se demostraba por el hecho de que Poincaré trabajaba frecuentemente por representación visual. El francés no se preocupaba por ser riguroso, y sentía aversión a la lógica. Su creencia era que la lógica no era un camino para desarrollar ideas sino una forma de estructurarlas, y por ende sostenía que la lógica limitaba las ideas.

Caracterización de Toulouse

La organización mental de Poincaré no solo interesó a sí mismo, sino también a Toulouse, un psicólogo del Laboratorio de Psicología de la Escuela de Altos Estudios en París. Toulouse escribió un libro que tituló Henri Poincaré (1910), en el cual analizó en detalle la rutina diaria del matemático francés:

  • Trabajaba en los mismos horarios cada día, pero durante cortos períodos de tiempo. Solía realizar investigación matemática durante cuatro horas al día: entre las 10 y el mediodía, y luego de 17 a 19. El resto de la tarde lo dedicaba a la lectura de artículos publicados en jornales.
  • Tenía una memoria excepcional, y podía recordar la página y la línea de cualquier texto leído. Por otro lado, podía recordar en forma textual algo que se le había dicho tiempo atrás. Poincaré mantuvo estas habilidades durante toda su vida.
  • Su metodología de trabajo normal consistía en resolver los problemas completamente en su cabeza, para luego transcribir la respuesta en papel.
  • Poincaré era ambidiestro y sufría de hipermetropía.
  • Su habilidad para visulaizar lo que escuchaba le fue de gran utilidad durante todas las clases a las que asistió, ya que su pobre visión le impedía ver lo que sus profesores escribían en el pizarrón.

Sin embargo, y más allá de sus numerosas virtudes, Poincaré también tenía varios defectos:

  • Su estado físico era pobre, y sus habilidades artísticas nulas.
  • Siempre se encontraba en un apuro, y le disgustaba tener que retroceder para realizar modificaciones o correcciones sobre lo hecho.
  • Nunca le dedicaba demasiado tiempo a un problema, ya que creía que su subconsciente seguiría trabajando sobre el mismo mientras él se dedicaba a otro tema.

Adicionalmente, Toulouse señaló en su trabajo que, a diferencia de la mayoría de los matemáticos que partían de principios prestablecidos, Poincaré comenzaba sus desarrollos partiendo de unos pocos principios básicos. (O'Connor et al., 2002)

Su metodología de pensamiento se encuentra resumida en la siguiente frase:

Habitué à négliger les détails et à ne regarder que les cimes, il passait de l'une à l'autre avec une promptitude surprenante et les faits qu'il découvrait se groupant d'eux-mêmes autour de leur centre étaient instantanément et automatiquement classés dans sa mémoire. (Desechaba los detalles y pasaba de una idea a otra, asumiendo que las conclusiones a las que arribaba en cada caso se conjugarían y le permitirían resolver el problema) (Belliver, 1956)

Contribuciones

Las numerosas contribuciones realizadas por Poincaré estuvieron especialmente relacionadas con los siguientes temas:

  • Topología algebraica
  • Teoría de funciones analíticas de varias variables complejas
  • Teoría de funciones abelianas
  • Geometría algebraica
  • Teoría de números
  • El problema de los tres cuerpos
  • Teoría de ecuaciones diofánticas
  • Teoría del electromagnetismo
  • Teoría de la Relatividad Especial
  • En un paper de 1894, introdujo el concepto de grupo fundamental.
  • En el campo de las ecuaciones diferenciales, Poincaré realizó contribuciones claves para la teoría cualitativa de ecuaciones diferenciales, como por ejemplo la Esfera de Poincaré y el Mapa de Poincaré.

Poincaré realizó además numerosos aportes en diferentes campos de la matemática aplicada, tales como Mecánica celeste, Mecánica de fluidos, Óptica, Electricidad, telegrafía, capilaridad, elasticidad, termodinámica, teoría potencial, mecánica cuántica, Teoría de la Relatividad y cosmología.

Fue además un gran divulgador de la matemática y la física, y escribió varios libros para lectores inexpertos en estos temas.

Honores

Premios

  • Medalla de oro de la Real Sociedad Astronómica de Londres (1900)
  • Bruce Medal (1911)

Denominaciones en honor a Poincaré

  • Cráter Poincaré en la luna
  • Asteroide 2021 Poincaré

Publicaciones

La principal contribución de Poincaré a la topología algebraica fue Analysis situs (1895), trabajo que representa la primera mirada sistemática de la topología.

Poincaré publicó además dos trabajos que sentaron las bases matemáticas de la mecánica celestial:

  • New Methods of Celestial Mechanics ISBN 1563961172
  • Lessons of Celestial Mechanics. (1905-10).

En sus escritos de divulgación, Poincaré contribuyó a establecer las definiciones populares y las percepciones de la ciencia:

  • Science and Hypothesis, 1901.
  • The Value of Science, 1904.
  • Science and Method, 1908.
  • Dernières pensées Edition Ernest Flammarion, Paris, 1913.

Fuente

Extraído de Biografiasyvidas, respetando sus condiciones

Bibliografía complementaria

Este artículo contiene información de Jules Henri Poincaré en PlanetMath, que se encuentra publicado bajo licencia GFDL.

  • Bell, Eric Temple, 1986. Men of Mathematics. Touchstone Books. ISBN 0671628186.
  • Belliver, André, 1956. Henri Poincaré ou la vocation souveraine. Paris: Gallimard.
  • Boyer, B. Carl, 1968. A History of Mathematics: Henri Poincaré, John Wiley & Sons.
  • Galison, Peter Louis, 2003. Einstein's Clocks, Poincaré's Maps: Empires of Time. Hodder & Stoughton. ISBN 034079447X.
  • Ivor Grattan-Guinness, 2000. The Search for Mathematical Roots 1870-1940. Princeton Uni. Press.
  • Kolak, Daniel, 2001. Lovers of Wisdom, 2nd ed. Wadsworth.
  • Lorentz, H.A., 1914, "Deux memoires de Henri Poincaré," Acta Mathematica 38: 293, 1921.
  • O'Connor, J. John, and Robertson, F. Edmund, 2002, "Jules Henri Poincaré". University of St. Andrews, Scotland.
  • Peterson, Ivars, 1995. Newton's Clock: Chaos in the Solar System. W H Freeman & Co. ISBN 0716727242.
  • Sageret, Jules, 1911. Henri Poincaré. Paris: Mercure de France.
  • Toulouse, E.,1910. Henri Poincaré.

Véase también

  • Conjetura de Poincaré
  • Topología
  • Teoría del Caos

Enlaces externos

  • Reseña sobre la vida de Poincaré y sus logros en el campo de las matemáticas - de la Universidad de Tennessee en Martin, EE.UU.
  • Una línea de tiempo sobre la vida de Poincaré Universidad de Nancy (en francés).
  • "La relatividad del espacio" - Traducción al inglés del artículo publicado en 1897 por Poincaré.
  • Henri Poincaré, His Conjecture, Copacabana and Higher Dimensions Artículo en Scientific American sobre la Conjetura de Poincaré.
  • Los archivos Poincaré - Mantenidos en la Universidad de Nancy. (en francés)
  • artículo sobre Poincaré en el GAP Group, Centro de Investigación Interdisciplinaria en Algebra Computacional de la Universidad de St. Andrews', en Escocia.
  • Obituario de Poincaré en The Times, 17 de julio de 1912
  • Traducción al inglés de "Ciencia e Hipótesis" (Poincaré 1905) en la Universidad Brock, de Canadá.
Navegación