การคูณ

http://th.wikipedia.org/w/index.php?title=%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%84%E0%B8%B9%E0%B8%93&...

หากจะกล่าวอย่างง่ายๆ การคูณ คือ การบวก จำนวนที่เหมือนกันหลายๆ จำนวน อย่างรวดเร็ว ผลลัพธ์ที่ได้จากการคูณเรียกว่า ผลคูณ จำนวนที่ถูกคูณเข้าด้วยกันเรียกรวมๆ ว่า สัมประสิทธิ์ หรือ ตัวประกอบ ถ้าเรียกโดดๆ จะเรียกว่า ตัวตั้งคูณ และ ตัวคูณ

สารบัญ

สัญลักษณ์

การคูณสามารถเขียนได้หลายรูป โดยที่ความหมายยังคงเดิม ด้านล่างทั้งหมด คือ 5 คูณ 2

5\times 2
5\cdot2
(5)2,\ 5(2),\ (5)(2),\ 5[2],\ [5]2,\ [5][2]
5*2\

สำหรับเครื่องหมายดอกจัน (*) นิยมใช้ในคอมพิวเตอร์ เพราะเป็นสัญลักษณ์ที่มีในทุกแป้นพิมพ์ แต่เราไม่ใช่ในการเขียนด้วยมือ และเราจะใช้ก็ต่อเมื่อไม่มีเครื่องหมายอื่นมาทดแทน (การใช้เครื่องหมายนี้เริ่มมาจากภาษาคอมพิวเตอร์ฟอร์แทรน) สำหรับตัวแปร โดยปกติแล้วเราจะไม่เขียนสัญลักษณ์การคูณไว้ นี่คือมาตรฐานในพีชคณิต

5x and xy.

ประโยคสัญลักษณ์นี้อาจก่อให้เกิดการสับสน เวลาตัวแปรมีชื่อยาวกว่าหนึ่งตัวอักษร และการเขียนลักษณะนี้จะไม่ใช้กับเลขโดดสองตัว เช่น 52 ไม่สามารถแปลว่า 5 × 2. ได้

ถ้าพจน์แต่ละพจน์ของผลคูณไม่ได้เขียนออกมาทั้งหมด เราอาจจะใช้เครื่องหมายจุดไข่ปลาแทนพจน์ที่หายไป เช่นเดียวกับการดำเนินการอื่นๆ (เช่น การบวก) เช่น ผลคูณของจำนวนธรรมชาติ ตั้งแต่ 1-100 อาจเขียน 1 \cdot 2 \cdot \ldots \cdot 99 \cdot 100. และสามารถเขียนให้เครื่องหมายจุดไข่ปลาอยู่บริเวณกึ่งกลางแนวตั้งของแถวได้อีกด้วย คือ 1 \cdot 2 \cdot \cdots \cdot 99 \cdot 100.

นอกจากนี้แล้ว ผลคูณยังสามารถเขียนได้ด้วยเครื่องหมายผลคูณ ซึ่งมาจาก อักษร Π (Pi) ตัวใหญ่ ในอักษรกรีก. ตัวอย่างเช่น

\prod_{i=m}^{n} x_{i}:= x_{m} \cdot x_{m+1} \cdot x_{m+2} \cdot \cdots \cdot x_{n-1} \cdot x_{n}.

ตัวห้อยของประโยคสัญลักษณ์ข้างต้นแทนตัวแปรหุ่น (สำหรับประโยคนี้คือ i) และขอบเขตล่าง (m); ตัวยกแทนขอบเขตบน (n) เช่น

\prod_{i=2}^{6} \left(1 + {1\over i}\right) = \left(1 + {1\over 2}\right) \cdot \left(1 + {1\over 3}\right) \cdot \left(1 + {1\over 4}\right) \cdot \left(1 + {1\over 5}\right) \cdot \left(1 + {1\over 6}\right) = {7\over 2}.

เรายังสามารถหาผลคูณที่มีพจน์เป็นอนันต์ได้อีกด้วย เรียกว่าผลคูณอนันต์ ในการเขียน เราจะแทนที่ n ด้านบนด้วยเครื่องหมายอนันต์ (∞). ผลคูณของพจน์จะกำหนดด้วยขีดจำกัดของผลคูณของ n พจน์แรก โดย n เพิ่มขึ้นโดยไม่มีขอบเขต เช่น

\prod_{i=m}^{\infty} x_{i}:= \lim_{n\to\infty} \prod_{i=m}^{n} x_{i}

นอกจากนี้ยังสามารถแทน m ด้วยจำนวนลบอนันต์

\prod_{i=-\infty}^\infty x_i:= \left(\lim_{n\to\infty}\prod_{i=-n}^m x_i\right) \cdot \left(\lim_{n\to\infty}\prod_{i=m+1}^n x_i\right),

และสำหรับจำนวนเต็ม m บางจำนวน สามารถกำหนดได้ทั้งอนันต์และลบอนันต์

นิยาม

สำหรับความหมายของการคูณ ผลคูณของจำนวนธรรมชาติ n และ m ใดๆ

mn:= \sum_{k=1}^n m

กล่าวสั้นๆ คือ 'บวก m เข้ากับตัวเอง n ตัว' สามารถเขียนได้ในลักษณะนี้เพื่อให้ชัดเจนมากขึ้น

m × n = m + m + m + ... + m

หมายถึงมีจำนวน 'm' n ตัวบวกกันนั่นเอง

  • 5 × 2 = 5 + 5 = 10
  • 2 × 5 = 2 + 2 + 2 + 2 + 2 = 10
  • 4 × 3 = 4 + 4 + 4 = 12
  • m × 6 = m + m + m + m + m + m

โดยใช้นิยาม เราสามารถพิสูจน์สมบัติของการคูณได้โดยง่ายดาย โดยดูจากสองตัวอย่างข้างต้น เรามีสมบัติว่า จำนวนสองจำนวนที่คูณกันสามารถสลับที่กันได้โดยผลคูณยังคงเดิม เราเรียกสมบัตินี้ว่า สมบัติการสลับที่ และ สมบัตินี้เป็นจริงสำหรับจำนวน x และ y ใดๆ นั่นคือ

x · y = y · x.

นอกจากนี้ การคูณยังมีสมบัติการเปลี่ยนหมู่อีกด้วย ความหมายสำหรับจำนวน x,y และ z ใดๆ คือ

(x · y)z = x(y · z).

หมายเหตุจากพีชคณิต: เครื่องหมายวงเล็บ หมายถึง การดำเนินภายในวงเล็บจะต้องกระทำก่อนการดำเนินการภายนอกวงเล็บ

การคูณมีสมบัติการแจกแจง เพราะ

x(y + z) = xy + xz.

มีสิ่งที่น่าสนใจเกี่ยวกับการคูณกับ 1 นั่นคือ

1 · x = x.

เราเรียก 1 ว่า จำนวนเอกลักษณ์

สำหรับเลข 0 เราจะได้

m · 0 = m + m + m +...+ m

เมื่อเรานำ '0' m ตัวมาบวกกัน ผลลัพธ์ที่ได้ย่อมเป็นศูนย์ นั่นคือ

m · 0 = 0

ไม่ว่า m จะเป็นจำนวนใด (แม้กระทั่งอนันต์).

การคูณกับจำนวนลบอาจจะต้องมีการคิดเล็กน้อย เริ่มจากการคูณ (−1) กับจำนวนเต็ม m ใดๆ

(−1)m = (−1) + (−1) +...+ (−1) = −m

นี่เป็นความจริงที่น่าสนใจว่า จำนวนลบ คือ จำนวนลบหนึ่ง คูณกับจำนวนบวกนั่นเอง เพราะฉะนั้นผลคูณระหว่างจำนวนบวกกับจำนวนลบทำได้โดยการคูณปกติ แล้วคูณด้วย (−1)

(−1)(−1) = −(−1) = 1

ในขณะนี้ เราสามารถสรุปการคูณระหว่างจำนวนเต็มสองจำนวนใดๆ ได้แล้ว และนิยามนี้ยังขยายไปสำหรับเซตของเศษส่วน หรือ จำนวนตรรกยะ และขยายไปถึงจำนวนจริงและจำนวนเชิงซ้อน

หลายคนอาจสงสัยถ้าบอกว่า ผลคูณของ'ไร้จำนวน' คือ 1

รูปแบบนิยามเรียกซ้ำของการคูณเป็นไปตามกฎ

x · 0 = 0
x · y = x + x·(y − 1)

เมื่อ x เป็นจำนวนจริง และ y เป็นจำนวนธรรมชาติ เมื่อเรากำหนดนิยามของการคูณจำนวนธรรมชาติแล้ว เรายังขยายผลไปถึงจำนวนเต็ม จำนวนจริง และจำนวนเชิงซ้อนได้

การคำนวณ

สำหรับวิธีที่รวดเร็วเพื่อคำนวณผลคูณของจำนวนขนาดใหญ่ ดู อัลกอริทึมการคูณ

ถ้าต้องการคูณจำนวณโดยใช้กระดาษกับดินสอ คุณจะต้องใช้สูตรคูณ (ไม่ว่าจะอยู่ในกระดาษหรือสมองของคุณ) และคุณอาจต้องรู้อัลกอริทึมการคูณอีกด้วย

ในทางดนตรี

(รอเพิ่มเติมเนื้อหา)

ดูเพิ่มเติม

  • การคูณอย่างง่าย
  • ส่วนกลับ
  • สูตรคูณ

ลิงก์ภายนอก

  • Multiplication Worksheets
  • Multiplication
  • Arithmetic Operations In Various Number Systems
ป้ายบอกทาง
ภาษาอื่น